23 июля 2019, вторник, 18:30
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.Дзен

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

Космические лучи как источник питания

Бактерия Desulforudis audaxviator под растровым электронным микроскопом
Бактерия Desulforudis audaxviator под растровым электронным микроскопом

Микроорганизм, открытый в 2002 году в южноафриканской шахте, может послужить моделью распространения жизни в космической среде.

На Земле большинство растений и некоторые бактерии используют энергию солнечного света для создания сложных молекул органических веществ. Ту же солнечную энергию, но опосредованно, используют и животные, которые едят растения или друг друга. Организмы, усваивающие солнечную энергию самостоятельно, биологи называют автотрофами, а те, которые пользуются плодами чужого труда, гетеротрофами.

Помимо фотосинтеза автотрофы могут использовать хемосинтез, где в качестве источника энергии выступает не солнечный свет, а окислительно-восстановительные реакции с неорганическими веществами из природной среды. Хемосинтезом занимаются многие представители двух царств органического мира: бактерий и архей. В качестве источников энергии для них выступают, например, сероводород, аммиак, сера и ее соли, соединения железа.

Нельзя, правда, сказать, что все хемосинтезирующие организмы полностью независимы от Солнца. Например, бактерии, которые получают энергию, превращая аммиак в азотную кислоту, в качестве источника аммиака используют разлагающуюся органику – то есть животных или растения, которые зависели от солнечного света. Существуют подземные бактерии, которые живут за счет окисления сульфатов, но и им для такой химической реакции нужен кислород, который выработали фотосинтезирующие организмы.

Как правило, такие хемосинтезирующие организмы образуют вокруг своего источника питания экосистему из нескольких видов. Но главный герой нашего рассказа – та самая южноафриканская бактерия – одиночка. И представляет собой единственный пример вида, живущего в полной изоляции от остальной биосферы и не пользующегося ничем, что было бы произведено другими организмами.

История ее открытия началась в ЮАР, на золотодобывающей шахте Мпоненг. При работах на глубине 2,8 километра среди базальтовых пород наткнулись на водоносный слой. Вода эта проникла туда не менее 2,7 милиарда лет назад. Она довольно горячая (60° C), имеет сильнощелочную реакцию (рН 9,3) и богата различными минеральными примесями. В некоторых скважинах биологи нашли сообщества из микроорганизмов, получающих энергию за счет окисления сульфатов. Но результат пробы из одной скважины оказался неожиданным. Ученые проанализировали 2600 литров этой подземной воды и убедились, что там присутствует один-единственный вид бактерий, родственный бактериями из рода Desulfotomaculum.

Название для нее взяли из романа Жюля Верна «Путешествие к центру Земли». Сюжет книги начинается с находки письма исландского ученого XVI века Арне Сакнуссена, которое заканчивалось словами: descende, audas viator, et terrestre centrum attinges – «спустись, отважный путник, и ты достигнешь центра Земли». Вот и бактерия, обитающая в подземных глубинах, была названа Desulforudis audaxviator.

Бактерия Desulforudis audaxviator представляет собой палочковидную бактерию размером примерно приблизительно 4 мкм. Ее геном составляют 2,35 миллиона пар нуклеотидов. Жить она способна только в бескислородной среде. А энергию получает из сульфат-ионов и водорода, находящихся в воде. Необходимый для бактерии водород выделяется из молекул воды и гидрокарбонатов под действием радиоактивного излучения горных пород. В первую очередь, источником этого излучения служит оксид урана (уранинит), а также радиоактивные изотопы тория и калия. Бактерия также умеет выделять из окружающей среды необходимые ей для жизни углерод (из ионов HCO2, HCO3 и CO32–) и азот (из ионов аммония). Таким образом, живущая за счет энергии радиоактивного распада бактерия сохранится, даже если Солнце погаснет, из земной атмосферы исчезнет кислород, а все прочие живые организмы исчезнут.

Подобная самодостаточность бактерии заставила астробиолога и специалиста по вычислительной физике Димитру Атри (Dimitra Atri), работающего в Институте космических наук Блю Марбл в Сиэтле (Blue Marble Space Institute of Science), предположить, что подобный механизм может позволить бактериям выжить и в условиях космоса. В качестве источника ионизирующего излучения в данном случае будут выступать не радиоактивные горные породы, а галактические космические лучи, представляющие собой протоны или ядра различных химических элементов (от гелия до урана), которые летят через Вселенную с энергией до 1020 эВ. Источниками этих лучей служат преимущественно взрывы сверхновых звезд.

На Земле от действия космических лучей живые организмы защищены атмосферой и магнитосферой, но на других планетах атмосфера может быть значительно менее протяженной или вовсе отсутствовать, могут они не иметь и собственного магнитного поля. Поэтому, считает Димитра Атри, галактические космические лучи достигают поверхности этих небесных тел с энергией, достаточной, чтобы обеспечить существование организмов, подобных Desulforudis audaxviator. Расчеты, подкрепляющие эту гипотезу, Димитра Атри опубликовал в Journal of the Royal Society Interface.

Ближайшим к нам кандидатом на существование жизни, получающей энергию от космических лучей, Атри считает Марс. Его тонкая атмосфера не составляет серьезной преграды для этих лучей, а значит они смогут вызывать распад веществ в марсианских горных породах. Атри отмечает: «Забавно, что мы сейчас надеемся найти жизнь на планетах с очень плотной атмосферой, хотя для этих форм жизни нужно искать нечто противоположное».

Астробиолог из Университета Сент-Эндрюса Дункан Форган (Duncan Forgan) согласен с Атри отчасти. Он разделяет взгляды на Марс как на потенциальное место существования форм жизни, подобных Desulforudis audaxviator. В пользу этого, по мнению Форгана, свидетельствуют относительно стабильные температуры Марса и состав горных пород. Но на других планетах, которые получают слишком мало света своей звезды, по мнению Форгана, температура будет слишком низкой для существования любых форм жизни. К тому же в случаях слишком большой интенсивности космических лучей жизнь на планете тоже будет невозможна, так как они повреждают и сам организм бактерии.

Для проверки своей гипотезы Димитра Атри планирует воссоздать в своей лаборатории условия шахты Мпоненг и выяснить, как на Desulforudis audaxviator будут влиять различные уровни радиации, в том числе те, что характерны для Марса, Европы и других небесных тел.

Обсудите в соцсетях

Система Orphus
«Ангара» Африка Византия Вселенная Гренландия ДНК Иерусалим КГИ Луна МГУ Марс Металлургия Монголия НАСА РБК РВК РГГУ РадиоАстрон Роскосмос Роспатент Росприроднадзор Русал СМИ Сингапур Солнце Юпитер акустика антибиотики античность археология архитектура астероиды астрофизика бактерии бедность библиотеки биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера викинги вирусы воспитание вулканология гаджеты генетика география геология геофизика геохимия гравитация грибы дельфины демография демократия дети динозавры животные здоровье землетрясение змеи зоопарк зрение изобретения иммунология импорт инновации интернет инфекции ислам исламизм исследования история карикатура картография католицизм кельты кибернетика киты климатология комета кометы компаративистика космос культура лазер лексика лженаука лингвистика льготы мамонты математика материаловедение медицина метеориты микробиология микроорганизмы мифология млекопитающие мозг моллюски музеи насекомые наука нацпроекты неандертальцы нейробиология неолит обезьяны общество онкология открытия палеолит палеонтология память папирусы паразиты перевод питание планетология погода политика право приматы психиатрия психоанализ психология психофизиология птицы ракета растения религиоведение рептилии робототехника рыбы сердце смертность сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология фольклор химия христианство школа экология эпидемии эпидемиология этология язык Александр Беглов Древний Египет Западная Африка Латинская Америка НПО «Энергомаш» Нобелевская премия РКК «Энергия» Российская империя Сергиев Посад альтернативная энергетика аутизм биология бозон Хиггса глобальное потепление грипп информационные технологии искусственный интеллект история искусства история цивилизаций исчезающие языки квантовая физика квантовые технологии компьютерная безопасность компьютерные технологии космический мусор криминалистика культурная антропология междисциплинарные исследования местное самоуправление мобильные приложения научный юмор облачные технологии обучение одаренные дети педагогика персональные данные подготовка космонавтов преподавание истории продолжительность жизни происхождение человека русский язык сланцевая революция финансовый рынок черные дыры эволюция эмбриональное развитие этнические конфликты ядерная физика Вольное историческое общество жизнь вне Земли естественные и точные науки НПО им.Лавочкина Центр им.Хруничева История человека. История институтов дело Baring Vostok Протон-М 3D Apple Big data Dragon Facebook Google GPS IBM MERS PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi

Редакция

Электронная почта: polit@polit.ru
Телефон: +7 929 588 33 89
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2019.