20 октября 2020, вторник, 12:35
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

05 декабря 2017, 15:37

Что мешает светодиоду светить ярче

Российский математический физик из Института вычислительной математики и математической геофизики СО РАН совместно с коллегами из Германии исследовал свойства светодиодов на основе нитрида галлия и построил математическую модель, объясняющую, почему лишь малая часть затраченной электрической энергии переходит в световую. В будущем это поможет создать светодиоды с более высоким КПД. Исследования поддержаны грантом Российского научного фонда (РНФ). Результаты опубликованы в Journal of Physics D: Applied Physics, кратко о них рассказывается в пресс-релизе РНФ.

«Данная работа поможет улучшить эффективность светодиодов из нитрида галлия, а также должна послужить толчком к более детальному экспериментальному поиску материалов для светодиодов с более высокой квантовой эффективностью, то есть высокой светоотдачей», – комментирует ведущий автор работы Карл Сабельфельд, доктор физико-математических наук, главный научный сотрудник Института вычислительной математики и математической геофизики СО РАН. 

Светодиод – это прибор на основе полупроводника, превращающий электрический ток в световое излучение. Полупроводники – вещества, которые по своим свойствам находятся между проводниками и материалами, неспособными проводить электричество. Их проводимость меняется в зависимости от температуры, излучений и других внешних условий. Работа полупроводников основана на переходе электронов на «вакантные места», которые называются дырками. Поскольку дырки заряжены положительно (им не хватает электронов, заряженного отрицательно), они перемещаются вслед за электронами, что также называется перемещением заряда. 

Начиная с 1990 года светодиоды часто делают из нитрида галлия (GaN). Это кристаллическое вещество – перспективный материал для изготовления других полупроводниковых приборов, так как нитрид галлия устойчив к ионизирующему излучению. Поэтому из GaN можно делать не только светодиоды, но и солнечные батареи для космических аппаратов. Эффективность уже первых светодиодов на основе нитрида галлия была сравнительно велика (4%), хотя плотность «ловушек», из-за которых энергия может теряться, у нитрида галлия намного больше, чем у других полупроводников с таким же КПД. 

Полупроводник из GaN, как и любой кристалл, имеет дислокации – линии, где нарушена регулярность кристаллической решетки (ещё их называют несовершенствами решетки, так как атомы в случае дислокаций оказываются несимметрично сдвинуты). Дислокации – это «ловушки», захватывающими экситоны (пары из электрона и дырки). Пойманные «ловушками» экситоны уже не могут излучать энергию в виде света, и светодиод светит слабее, чем мог бы. Поэтому дислокации и другие возможные дефекты мешают создать светодиоды, в которых потери энергии не происходит. 

Моделирование процессов диффузии и захвата экситонов проникающими дислокациями. Источник: Карл Сабельфельд

«Однако строгой физической теории о том, как происходит взаимодействие экситонов с дислокациями, не существует, и проблема еще усложняется тем, что методы физических измерений таких взаимодействий довольно сложны и требуют математической поддержки и компьютерного моделирования», – поясняет Карл Сабельфельд.

Наконец такая теория была создана, и помогли в этом методы измерения попадания экситонов в их «ловушки». Чтобы засечь сигнал от взаимодействия экситонов и «ловушек», экспериментаторы используют несколько методов: катодолюминесценцию, основанную на свечении вещества, которое облучили потоком быстрых электронов, и измерение тока, вызванного воздействием на нитрид галлия пучка электронов.

Физики провели сложнейшие, по их словам, расчеты и впервые нашли точное решение задачи об интенсивности катодолюминесценции и тока, вызванного действием электронного пучка. Также они впервые построили модель взаимодействия экситонов и дислокаций, создав строгую теорию, математически объясняющую экспериментальные данные. Новые модели позволяют гораздо лучше понять, как и почему экситоны попадают в «ловушки» и что в будущем поможет повысить КПД светодиодов.

Исследование выполнено совместно с учеными из Института твердотельной электроники им. П. Друде (Берлин).

Обсудите в соцсетях

«Ангара» Африка Византия Вселенная Гренландия ДНК Иерусалим КГИ Луна МГУ МФТИ Марс Монголия НАСА РБК РВК РГГУ РадиоАстрон Роскосмос Роспатент Росприроднадзор Русал СМИ Сингапур Солнце Титан Юпитер акустика антибиотики античность антропогенез археология архитектура астероиды астрофизика бактерии бедность библиотеки биоинформатика биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера вакцинация викинги вирусы воспитание вулканология гаджеты генетика география геология геофизика геохимия гравитация грибы дельфины демография демократия дети динозавры животные здоровье землетрясение змеи зоопарк зрение изобретения иммунология импорт инновации интернет инфекции ислам исламизм исследования история карикатура картография католицизм кельты кибернетика киты клад климатология клонирование комары комета кометы компаративистика космос культура культурология лазер лексика лженаука лингвистика льготы мамонты математика материаловедение медицина металлургия метеориты микробиология микроорганизмы мифология млекопитающие мозг моллюски музеи насекомые наука нацпроекты неандертальцы нейробиология неолит обезьяны общество онкология открытия палеоклиматология палеолит палеонтология память папирусы паразиты перевод питание планетология погода политика право приматы природа психиатрия психоанализ психология психофизиология птицы путешествие пчелы ракета растения религиоведение рептилии робототехника рыбы сердце смертность собаки сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология фольклор химия христианство цифровизация школа экзопланеты экология электрохимия эпидемии эпидемиология этология язык Александр Беглов Алексей Ананьев Дмитрий Козак Древний Египет Западная Африка Латинская Америка НПО «Энергомаш» Нобелевская премия РКК «Энергия» Российская империя Сергиев Посад Солнечная система альтернативная энергетика аутизм биология бозон Хиггса вымирающие виды глобальное потепление грипп защита растений инвазивные виды информационные технологии искусственный интеллект история искусства история цивилизаций исчезающие языки квантовая физика квантовые технологии климатические изменения компьютерная безопасность компьютерные технологии космический мусор криминалистика культурная антропология культурные растения междисциплинарные исследования местное самоуправление мобильные приложения научный юмор облачные технологии обучение одаренные дети педагогика персональные данные подготовка космонавтов преподавание истории продолжительность жизни происхождение человека русский язык сланцевая революция физическая антропология финансовый рынок черные дыры эволюция эволюция звезд эмбриональное развитие этнические конфликты ядерная физика Вольное историческое общество Европейская южная обсерватория жизнь вне Земли естественные и точные науки НПО им.Лавочкина Центр им.Хруничева История человека. История институтов дело Baring Vostok Протон-М 3D Apple Big data Dragon Facebook Google GPS IBM MERS PayPal PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi

Редакция

Электронная почта: polit@polit.ru
Телефон: +7 929 588 33 89
Яндекс.Метрика Top.Mail.Ru
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2020.