5 декабря 2020, суббота, 06:32
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

Нейросеть предскажет вероятность смерти по данным фитнес-трекера

Pixabay

Искусственный интеллект все чаще применяют в медицине для помощи в постановке диагноза, анализа рентгеновских снимков и кардиограмм, определения индивидуальных рисков. Научные сотрудники российской компании Gero и Московского физико-технического института обучили нейросети предсказывать вероятность смерти на основе данных фитнес-трекера. Исследование опубликовано в журнале Scientific Reports, кратко о нем сообщается в пресс-релизе МФТИ.

Старение с биологической точки зрения — это увеличение риска болезней и смерти с каждым прожитым годом: в среднем они удваиваются каждые восемь лет. При этом у двух отдельных людей с одинаковой датой рождения биологический возраст может отличаться больше, чем на десяток лет. Поэтому исследования по замедлению старения делятся на два важных направления: своевременная диагностика возрастных изменений и их терапия.

Рассказывает Петр Федичев, заведующий лабораторией моделирования биологических систем МФТИ и научный директор Gero: «Нам удалось показать, что искусственный интеллект позволяет неинвазивно оценить биологический возраст испытуемых и вероятность наступления смерти. Для достоверных результатов не требуются медицинские анализы — достаточно данных о движениях человека, записанных фитнес-трекером».

Искусственный интеллект уже применяют в анализе кардиограмм, в диагностике болезней легких по рентгеновским снимкам, с его помощью определяют биологический возраст по данным компьютерной томографии, ставят диагноз и предсказывают риски смертности по медицинским историям болезни. Ученые использовали возможности этой технологии, чтобы создать удобный инструмент мониторинга, который может оценить общее состояние организма человека и следить за изменением уровня риска еще до того, как тот сдаст какие-либо анализы.

В работе исследователи опирались на медицинские данные 10 000 человек, собранные в 2003-2006 годах в ходе национального исследования NHANES в США. В базе данных содержится информация о том, как люди с разным состоянием здоровья двигались во время непрерывного ношения фитнес-трекера: как часто переходили от движения к состоянию покоя, сколько шагов прошли, какая интенсивность физических нагрузок была максимальной. С помощью алгоритмов глубокого обучения нейронную сеть научили выявлять неблагоприятные тенденции: связывать определенные паттерны, повторяющиеся последовательности движений с данными медицинских историй и показателями анализов. Искусственный интеллект отлично справился с задачей: выявил испытуемых из группы повышенного риска и определил их биологический возраст точнее, чем традиционные методы, применяемые в исследованиях старения.

Ученые рассчитывают, что разработанный ими алгоритм будет полезен медицинским организациям и страховым компаниям, которые смогут дистанционно выявлять людей из группы риска и оптимизировать работу с ними. В компании разработали прототип мобильного приложения на основе алгоритма, Gero Lifespan, бета-версию которого уже можно установить на смартфон.

Обсудите в соцсетях

«Ангара» Африка Византия Вселенная Гренландия ДНК Иерусалим КГИ Луна МГУ МФТИ Марс Монголия НАСА РБК РВК РГГУ РадиоАстрон Роскосмос Роспатент Росприроднадзор Русал СМИ Сингапур Солнце Титан Юпитер акустика антибиотики античность антропогенез археология архитектура астероиды астрофизика бактерии бедность библиотеки биоинформатика биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера вакцинация викинги вирусы воспитание вулканология гаджеты генетика география геология геофизика геохимия гравитация грибы дельфины демография демократия дети динозавры животные здоровье землетрясение змеи зоопарк зрение изобретения иммунология импорт инновации интернет инфекции ислам исламизм исследования история карикатура картография католицизм кельты кибернетика киты клад климатология клонирование комары комета кометы компаративистика космос кошки культура культурология лазер лексика лженаука лингвистика льготы мамонты математика материаловедение медицина металлургия метеориты микробиология микроорганизмы мифология млекопитающие мозг моллюски музеи насекомые наука нацпроекты неандертальцы нейробиология неолит обезьяны общество онкология открытия палеоклиматология палеолит палеонтология память папирусы паразиты перевод питание планетология погода политика право приматы природа психиатрия психоанализ психология психофизиология птицы путешествие пчелы ракета растения религиоведение рептилии робототехника рыбы сердце смертность собаки сон социология спутники средневековье старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология фольклор химия христианство цифровизация школа экзопланеты экология электрохимия эпидемии эпидемиология этология язык Александр Беглов Алексей Ананьев Дмитрий Козак Древний Египет Западная Африка Латинская Америка НПО «Энергомаш» Нобелевская премия РКК «Энергия» Российская империя Сергиев Посад Солнечная система альтернативная энергетика аутизм биология бозон Хиггса вымирающие виды глобальное потепление грипп защита растений инвазивные виды информационные технологии искусственный интеллект история искусства история цивилизаций исчезающие языки квантовая физика квантовые технологии климатические изменения компьютерная безопасность компьютерные технологии космический мусор криминалистика культурная антропология культурные растения междисциплинарные исследования местное самоуправление мобильные приложения научный юмор облачные технологии обучение одаренные дети педагогика персональные данные подготовка космонавтов преподавание истории продолжительность жизни происхождение человека русский язык сланцевая революция физическая антропология финансовый рынок черные дыры эволюция эволюция звезд эмбриональное развитие этнические конфликты ядерная физика Вольное историческое общество Европейская южная обсерватория жизнь вне Земли естественные и точные науки НПО им.Лавочкина Центр им.Хруничева История человека. История институтов дело Baring Vostok Протон-М 3D Apple Big data Dragon Facebook Google GPS IBM MERS PayPal PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi

Редакция

Электронная почта: polit@polit.ru
Телефон: +7 929 588 33 89
Яндекс.Метрика Top.Mail.Ru
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2020.